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Macroscopic free boundary problems involving phase transitions (e.g., the 
classical Stefan problem or its modifications) are derived in a unified way 
from a Hamiltonian based on a general set of microscopic interactions. A 
Hamiltonian of the form H=52x, x,J(x-x')q~(x)q)(x') leads to differential 
equations as a result of Fourier transforms. Expanding the Fourier transform of 
J in powers of q (the wave number), one can truncate the series at an arbitrary 
order M, and thereby obtain Mth-order differential equations. An asymptotic 
analysis of these equations in various scalings of the physical parameters then 
implies limits which are the standard macroscopic models for the dynamics of 
phase boundaries. 

KEY WORDS:  Interfaces; phase boundaries; Landau-Ginzburg; Stefan 
problem; Gibbs-Thomson effect; microscopic derivations. 

1. I N T R O D U C T I O N  

A question of considerable interest in nonequilibrium statistical mechanics 
is the derivation of macroscopic phase boundary equations from 
microscopic physics. A related question of justifying a mean field approach 
has been studied in ref. 1 for some cases. The development presented here 
is along the lines of previous work in which a phase or order parameter has 
been used to study free boundaries arising from phase transitions/2"31 This 
is coupled to a heat equation with a source term which involves the order 
parameters. We begin by considering the (reduced) Hamiltonian on a 
hyperrectangular lattice 2 a, 

~ - � 8 9  Y~ J(x-x')~o(x)~o(x')- ~ w(~o(x)) (1.1) 
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where w(~p(x)) is a double-well potential and J is the given set of interac- 
tions. Obtaining the free energy from (1.1), using Fourier transforms, and 
retaining terms to an arbitrary order M, one may derive the evolution 
equation (see refs. 4 and 5 for details), 

2n J2n r~pt = ~ ~ (DII + "'" + D d d )  n ~ - -  G'(~p) + 2au 
n = l  

(1.2) 

where J(x) is assumed (for simplicity) to be isotropic and 

J z , = f  J(x)(x~+ ... +x~)ndx (1.3) 
~d 

while G is a double-well function with extrema at _+ 1 and u is the tem- 
perature scaled so that u = 0 is the ordinary melting temperature. Alter- 
natively, one may work with the continuum problem directly. In (1.2), ~ is 
a (dimensionless) relaxation time and e is a (dimensionless) length scale 
related to the strength of interactions. In general both of these constants 
are assumed to be small. The evolution equation for the phase ~0 is coupled 
to the heat equation with a source term 

u,+ �89 (1.4) 

where l is the latent heat and K the diffusivity. We assume (for stability 
considerations) that M is odd. 

In this paper we perform a detailed asymptotic analysis of [(1.2), 
(1.4)] and show that in various scaling limits, as z and e approach zero, 
one may attain any of the Stefan or modified Stefan models with sharp 
interfaces and prescribed conditions on the interface as shown in Fig. 1. A 
related limit, known as the quasistatic approximation in phase boundary 
problems, and the Hele-Shaw model in immiscible fluid flow problems, is 
also attained in a limit in which K approaches zero. These models may be 
described as follows. 

A set of macroscopic equations which incorporate (i) latent heat 
across an interface, ( i i)heat diffusion in both phases, and (iii)surface 
tension, curvature, and kinetic undercooling effects on the interface, can be 
described as follows. The problem is to determine a function u(x, t) and a 
surface F(t) such that 

u , = K A u  in f 2 \ F  (1.5) 

l v = K ( V u s - V U L ) . ~  on r (1.6) 

A s u = - ~ - [ 3 ~ v  on [ '  (1.7) 
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f -..., 

f Scaling limit 

= fixed 

Microscopic Hamiltonian and Nonconserved Dynamics 

] ,~= f dxdx' J (x-  x')p(x)~(x') 

+ 
I Generalized Phase Field Equations 

ut + ~ t  = K A u  
M 

ae2~pt= ~ 2n J2n ~P+ f(9~) + 2 a  ~ .  (Dll + ... Ddd )n u 
n=l  

--... / -  

Modified Stefan model 

u t = K A u  

e v= K [Vu S -VUL] 
u (7 (7 = -  ~ n - ~ v  

n] on r 

! 
[ Scaling limit 

G a ~ 0  ee= fixed 

[ -1 (a ----~ 0 

Classical Stefan model 

u t = K A u  

tv=1((Vu S - v u L ) . n l  on F 
u=O J 

Scaling limit 

a = fixed 

> 
Hele-Shaw model 

0 = A u  
- ~ v  = [vu] + �9 ;~ ] o~ 

As ~ entropy difference between phases 
(7 z interracial (surface) tension 
P ~ interface between phases 

Fig. 1. The microscopic Hamiltonian and nonconserved dynamics lead to the generalized 
phase field equations which are Mth order differential equations as a result of truncating the 
Fourier series for the interactions at Mth order. By scaling the parameters in various regimes, 
one can obtain the standard macroscopic, or sharp interface, free boundary problems. The 
crucial issues in these scalings is whether various physical quantities such as the interracial 
tension and kinetic undercooling coefficient vanish as the interracial thickness approaches 
zero. One thus obtains models in which the interracial behavior is drastically different. 

822/59/3-4-22 
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where ~c is the sum of the principal curvatures, As is the entropy difference 
between the two phases, a is surface tension, and/3 is a constant which is 
related to a relaxation time (all constants dimensionless). The variable v is 
the signed (normal) velocity of F so that it is positive for solidification, 
is the unit normal to F, and (Vus-VuL).h is the jump in the normal 
derivative of u across F. 

If ~ is set at zero, then [(1.5)-(1.7)] is called the classical Stefan 
model. This model does not account for any type of supercooling, since the 
sign of u determines the phase, unlike the modified Stefan model, i.e., 
[(1.5)-(1.7)] with a ~ 0. 

Another macroscopic model which has been studied is the quasistatic 
model, analogous to [(1.5)-(1.7)], in which (1.5) is replaced by 

Au=O (1.8) 

and c~ is generally set equal to zero. Physically this means that the heat is 
diffused sufficiently rapidly that the temperature profile may be regarded as 
being in the steady state. The set of equations [(1.6)-(1.8)] has also been 
used to describe the Hele-Shaw problem, i.e., the pressure between two 
immiscible, incompressible fluids which are between two plates. 

The thrust of this work is in the uniform (formal) derivation of a 
broad range of macroscopic equations for sharp interface problems which 
arise from condensed matter physics. Furthermore, since the evolution 
equation (1.2) has been derived using Fourier transforms with a truncation 
at an arbitrary high order, these results establish a connection between the 
detailed microscopic interactions and the resulting macroscopic equations. 
The formal asymptotics for Eqs. (1.2), (1.4) consists of matching orders of 
E in the "inner" and "outer" expansions (see Section2) to obtain an 
approximation N q~(n) Zn=l  to the true solution q). In principle, this proce- 
dure would become rigorous if one could prove that in some norm 

(~ -- i ~nf~(n) ~ C(N) e u (1.9) 
n = l  

An asymptotic series such as zN= 1 e"rP (n) need not be (and usually is not) 
convergent in order to be useful, since the inequality (1.9) implies that one 
can obtain an approximation to the desired order. 

These results can be generalized in a number of ways. Equation (1.4), 
which includes the source term -�89 is the simplest phenomenological 
term for an interface of finite width. The methods presented here would 
apply to any such source term -l/2h(qo)t. We do not pursue a derivation 
of this term in this paper. 

The role of microscopic anisotropy may also be readily incorporated 
with these methods by introducing it via J(x). 
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2. P R E L I M I N A R I E S  

Using the (reduced) 
transtbrms (4) 

Hamiltonian (1.1) and the discrete Fourier 

(o(q)- ~ e 'qx(p(x), J(q) =- ~ e-'q Xj(x) (2.t) 
x e  C~ x e  C~ 

one may write the interaction part of the Hamiltonian as 

J(x -x ' ) cp(x )cp(x ' )=N l~J (q ) (o (q ) (o ( -q )  (2.2) 
x , x ~ f  q 

where N is the number of spins in the lattice. Upon taking the continuum 
limit with the procedure described in ref. 4, p. 145, one obtains the free 
energy 

~ { ~ o } - f F d x l - - . d x d  

F =  ~aa ( - 1 aZ"b(2n; Pl ..... Pal) 
n = l  P I + - . . p d = 2 n  

• ( D U -  D  /2 0)2 + 1 C(0)-2u o 
a 

(2.3) 

Here, Di is the derivative in the ith direction and the primed sum is over 
all sets of positive, even numbers {PI ..... Pd} whose sum is 2n. The coef- 
ficients are moments of the interactions, given explicitly by 

1 
! x f  �9 b(2n; P l  ..... Pal) =- J(x) -.. dxm " dxd 

Pl!'" "Pa! J 
(2.4) 

Also, a is a dimensionless length scale which determines the well depth for 
the double-well potential, (l/a)G(~o). The convergence properties of (2.3) 
are contingent upon the regularity properties of q) and its derivatives. 

The order parameter ~0 must satisfy the evolution equation f~0,= 
-6~-/&o, where f is a relaxation time. If we truncate the series in (2.3) at 
some arbitrary integer M, then the Euler-Lagrange equations imply (in the 
isotropic case) the evolution equation (1.2). 

The system of equations I-(1.2), (1.4)] can then be studied subject to 
initial conditions and external boundary conditions in a region f2 in 
d-dimensional space. In order to discuss a single interface in a finite 
domain, we assume that • is annular (not necessarily spherically sym- 
metric) and suppose that the inner part is solid and the outer part is liquid. 
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For geometries in which the interface intersects with an external container, 
one must incorporate the physics of three-phase (instead of two-phase) 
equilibrium. We denote by (?sO_ and 0SO +, respectively, the inner and outer 
parts of the boundary 0SO of SO. We assume the boundary conditions 

u(x, t)=uo(x), xeaso (2.5) 

U 
~o(x,t)=q)+_(x), ~v/~o(x, t) = O, x e <?SO ( j =  1,..., M -  1) (2.6) 

where the values ~0+ on the outer and inner boundaries are given by the 
largest and smallest roots of 

f((p+(x))+2aua(x)=O, x~?SO (2.7) 

and v is the normal to 0SO. Note that for small values of a, which is of 
primary interest, (p + ~ _ 1. In the limit as a ~ 0, ~o + = _+ 1. 

Other boundary conditions can also be imposed. The results do not 
depend crucially on the precise nature of the external boundary conditions 
so long as (p is maintained at ~ + 1 near 0SO. 

The qualitative nature of the solution (u, ~0) to [(1.2), (1.4)] is 
expected to be a transition layer behavior for ~0 with thickness of order e, 
while the gradient of u makes a similar transition. This behavior will be 
confirmed by the use of matched asymptotic analysis. We let the interface 
be defined by 

r(t)= {x+m ~0(t, x)=0} (2.8) 

and let r be the normal coordinate to F(t), defined so that it is positive 
from the solid (~0 <0)  to liquid ((p > 0). The scaled normal derivative is 
defined by 

p = r/e (2.9) 

Let ~ be an approximation to the solution q~ of [(1.2), (1.4)] such that for 
some positive constant C, 

I~ o - @l <<. C e  (2.10) 

The surface tension a for this model is calculated from the free energy 
(2.3) to leading order using the definition 

E 1 1 ] 
1 ~ { ~ ) - ~  {~o+ ) - ~ Y { ~ o  } (2.11) 

a surface area 
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This surface tension has been calculated in ref. 5 [-with the summation in 
(2.3) truncated at M]  as 

C, M J2n 
o - = -  Z ( - 1 )  "+1 

a n = l  (2n)! n 110,,[I 2 (2.12) 

foo 
On ~a~O 110n/12~ 02(p) dp (2.13) 

c~p" ' -oo 

Physically, the key ideas of the asymptotic analysis may be sum- 
marized as follows. The thickness of the interface is of order e. This is 
evident from the form of (1.2), in which the 2nth derivative is multiplied by 
e 2~, thereby implying the scaling of (2.9). The surface tension, however, is 
of order ea 1, so that the relationship between e and a is crucial in deter- 
mining the limiting surface tension as e approaches zero. For  example, a 
sharp interface with finite surface tension can be attained by setting e = a, 
as discussed in Section 3. 

The functions u and ~0 are expanded in their original variables as 

u(x, t, e) = u~ t) + eul(x, t) + e2uT(x, t) + ... 
(2.14) 

~o(x, t, e) = q~~ t) + e~01(x, t) + ~2~o~(x, t) + -.. 

For simplicity of exposition, we assume a two-dimensional geometry and 
let s be a measure, of arc length from some fixed point so that (r, s) is a 
local coordinate system. The expansions (2.13), (2.14) are called the outer 
expansion. Using the stretched variable p defined by (2.9), we define the 
inner variables U, (J by 

u(x, t, e)= U(p, s, t, e)= U~ s, t) + eU~(p, s, t) + . . .  

~o(x, t, ~) = ~ (p ,  s, t, ~) = ~o(p ,  s, t, ~) + ~ ' ( p ,  s, t )  + . . .  
(2.15) 

We use the notation that f lr~ means the limiting value o f f  as F is 
approached from r > 0  or r < 0 ,  respectively. Analogous expansions are 
carried out for r, s, and F. 

3. A SHARP INTERFACE L IMIT  WITH 
FINITE SURFACE TENSION 

We now perform an asymptotic analysis of the first limiting case, i.e., 
nonzero surface tension. 

P r o p o s i t i o n  3.1. In the formal asymptotic limit as e approaches 
zero with a-=e, ~=cons t ,  the phase field equations [-(1.2), (1.4)] are 
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governed by the sharp interface model [(1.5)-(1.7)] with a defined by 
(2.12) and /~-=e 110,112. The outer expansion for u and q~ in terms of the 
original variables is obtained by substituting (2.14) into (1.2), (1.4) and 
formally equating coefficients of powers of e. 

Outer Expansion 
O(1): 

o(~): 

[ 0 u ~ + -~ ~o, = K A u  ~ (3.1) 

f(q~O) = 0 (3.2) 

bl tl ~_~l ~o~ = K Au 1 (3.3) 

f'(~0 ~ ~o 1 + 2u ~ = 0 (3.4) 

where f(~o)_=-G'(q~). We note that the O(1) and O(a) equations are 
identical for differential equations (1.2) of all orders M. One has then 

q~o= +1 (or0)  (3.5) 

~o I = - 2u~ ( ~o ~ (3.6) 

Equation (3.5) thus implies that (3.1) reduces to the heat equation for all 
points which are not on the interface. 

Inner Expansion.  Using the (r, s) coordinate system, one can write 
the Laplacian of an arbitrary function w as 

z~W = Wrr ~- ~W r -~- IVsl 2 Wss + As Ws (3.7) 

while the time derivative wt now becomes 

w, + r,wr + s,w~ (3.8) 

Equations (1.4), (1.2) are then transformed by the (p, s) coordinate system 
into 

( , ) KUpp + ~ - r t U  o - ~  rr(b p + K Ar Up 

[ ' '  ] _~2 g , + s ,  g s + _ ~ ( ~ , + ~ s , ~ , + g ( i V s l 2  g~s+AS Us) = 0  (3.9) 
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~e2(r + r,r + s,r 

~ ~2, J2,, / ~ 2 0 0 2 a )  n 
= = ~  (~n).~ ~yr~ + K ~ + IVs/2 ~s2 + As ~ q~ +/(q~) + 2eU 

J2n //0 2n~ ~2n-- 1@~ 
= n = , ( ~ n ) ) . ~ r 2 . + e n ~ c ~ j + f ( ~ a ) + 2 g U + O ( e 2 )  (3.10) 

We formally equate the orders in (3.9), (3.10). Then the inner and 
outer solutions are "matched" using the conditions described in the 
Appendices of refs. 3 and 6. One has the following first-order inner 
problem: 

o(1): 

U~ = 0  (3.11) 

J2n O2n~0 
n - - 1  (2n)! ~?r 2" kf(q~~ (3.12) 

The general solution to (3.11) is given by 

U ~  = cp + b 

where c, b are independent of p. Since the matching condition 

U ~  ~ ,  t ) =  u~ ~  t) (3.13) 

cannot be satisfied unless c = 0, one has the first-order inner solution 

U ~ = b (independent of p) (3.14) 

The boundary conditions (2.6) imposed on q) imply for the O(1) inner 
solution the conditions 

(90( ! c~, t)  = + l ,  o~~ + t) = 0 63vj T , --  ~ ,  ( j =  1,..., M -  1) (3.15) 

where the variable s has been omitted. The boundary value problem (3.12), 
(3.16) is an ordinary differential equation that we assume has a solution 
which is odd. We let ~,(p) defined by 

4,=4, 0 (3.16) 

denote this solution. 



878 Caginalp 

The next order is given by the following: 
0(~): 

l o o KU~pp =-~ r, Cp (3.17) 

_ocvoq~7= ~ J2n //6~2nr 1 ~2n 1 ) 
+s'I  ~ 

0 where we have used (3.14) to set Up = 0. 
Upon integrating (3.17), one obtains 

1 l KU p= ~ r~ + 

~bl + 2 U  ~ (3.18) 

cl (3.19) 

where ci depends on s and t, but not on p. Combining (3.19) with the 
matching condition 

lim Ulp(p, t )= o o Ur(['+, t) (3.20) 

one has the interface condition 

o l o (3.21) Kurlr+= +_~r + +cl  

Subtracting (3.21) with the plus sign from the minus, one has 

K[u ~ +_ = - Iv  ~ (3.22) 

which is the latent heat condition (1.6) to first order. 
Next, consider Eq. (3.18), which we rewrite as 

~, J2n 02nq ~1 
L r  =,(2n)!  ap 2" + f , ( r 1 6 2  

J2, ~ a 2 , - l ~  

(2n)! . ~ ,  

= H  (3.23) 

Note that the homogeneous equation has ~kp as a solution, i.e., L~bp = 0. 
The boundary conditions for ~b ~ are implied by (2.6) as 

~,~j r  ~ ,  t) = 0 ( j = l  ..... M - l )  (3.24) 
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An orthogonality relation can then be obtained from the identity 

j (O~LOo - OpLO ~) dp = - OH do (3.25) 
o() oG 

An application of integration by parts using (3.24) implies that the left- 
hand side vanishes. Rewriting the right-hand side, one obtains the relation 

I ~ ~2" ~ - ~  2 ~ ~  o ~ = o  (3.2~t 
- o o  - - 8 / ' / / s  ( - ~ n ) - ~ n =  1 

Analyzing the terms in (3.26), one obtains 

t - 2 U ~  do = - 4 b  = -4U~ (3.27) 

f S -~o02~dp=~o 02~dp t3.28) 
co oo 

since U ~ = b is a constant and v ~ is a property of the curve on which p = 0. 
Also, one has, by repeated integration by parts, the identity 

oo \ @ 2 n - l ] \ @ ]  d p = ( - 1 ) n -  o~ \c~p"] dp (3.29) 

Employing the notation of (2.13), one can write 

M J 2 n  
4u~ = - ~ c  ~ ( -1 )n+ 'n~-2~l l~H2-c~v~ 2 (3.30) 

n = l  

Since the entropy difference (7~ between phases is 4 and the surface tension 
is given by (2.12), one has 

Asu~ - ~ c -  ~ II01112 vo (3.3l) 

Thus, we see that the first-order outer solution satisfies the interface 
relation (1.7). This is the last of the three objectives which are summarized 
in Proposition 3.1. 

P r o p o s i t i o n  3.2. In the formal asymptotic limit as e and 
approach zero with a = e ,  the phase field equations [(1.2), (1.4)] are 
governed by the sharp interface model [(1.5)-(1.7)] with /3=0 and 
defined by (2.12). 

The verification of this limit is similar to the previous case. The main 
difference is that the left-hand side of (3.18) vanishes. Consequently, the 
velocity term is absent in (2.31). 
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4. A SHARP INTERFACE LIMIT WITH ZERO SURFACE 
TENSION (CLASSICAL STEFAN MODEL)  

The calculation of the surface tension (2.12) for the free energy which 
leads to (1.2) suggests that a scaling in which e/a approaches zero leads to 
a sharp interface model in which surface tension vanishes. If o- is set at zero, 
Eqs. (1.5)-(1.7) do not incorporate surface tension. This model, which was 
originally introduced as a one-dimensional problem,/8) is called the classi- 
cal Stefan model in the mathematics literature. The interface is known to 
be highly unstable in the absence of surface tension as a stabilizing factor. 
We present an asymptotic analysis in a scaling which is convenient for 
attaining this limit. 

P r o p o s i t i o n  4.1. In the formal asymptotic limit as e approaches 
zero with e =g3, r = ~g6 (c( = f i x e d ) ,  and a = g  2, the phase field equations 
[(1.2), (1.4)] are governed by the classical Stefan model [(1.5)-(1.7), 
o--O]. 

With this scaling, Eqs. (1.2), (1.4) can be written as 

l 
ut +-~ cp,= K Au (4.1) 

0(g6@t= ~ g6n Jn 
(-~n)T.(D,I+ . . .Dda)"cp+f(cp)+2g2u (4.2) 

,=1 

We note that with this scaling the surface tension a approaches zero 
as g goes to zero [see (2.12)]. The asymptotic analysis is somewhat 
different from that of Section 3 in that the scaled variable is now 

z = rig 3 (4.3) 

Thus, the factor by which the normal variable scales is not the same as the 
expansion parameter g. The expansions are as follows. 

Outer Expansion 
0(1):  

o(~): 

l 0 
u~ + ~ (Pt = K Au~ (4.4) 

f(qo ~ = 0 (4.5) 

u, +~(p ,  = K A u  1 

f'(~o~ (01 = 0 

(4.6) 

(4.7) 
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The O(1) expansion is the same as in Section 3, so that one obtains 
the heat equation at all points which are not on the interface. 

The inner variables are now written as 

U(z, s, t, g) - u(x, y, t, g), r s, t, g) -= (p(x, y, t, g) (4.8) 

while Eqs. (1.2), (1.4) are transformed into 

KUzz + g3 ( _ r , U  z l Uz) - ~  r,~b_, + K Ar 

E ' '  ] _g6 g,+ g,s,+5~,+-~r IVs/2+ g+zfs) =0 (4.9) 

,,=1 (2n)? \Oz2" +g3mc +f((~)+2g2U-~ (4.t0) 

The orders may now be matched formally as follows: 

Inner Expansion 
0(1): 

o(g): 

OCg:): 

0 U = = O  (4.11) 

J2, 02"r 0 
,=1 (2n)! •z 2" + f (qh~  (4.12) 

u ~ = o  

J2n ~2n~l 
L~b~-- -(2n)? az 2n + f ' ( r 1 7 6 1 6 2  

n = l  

(4.13) 

(4.14) 

U2z=O (4.15) 

Lr = , = t  (2n)t +z 2" + f , ( r  r = _ f,,Cq~O)C~b,)2_ 2U o C4.16) 

The O(1) expansion is identical to (3.11), (3.12) and results in the 
solutions (3.14), (3.16). Equation (4.14), subject to the boundary condi- 
tions (2.6), has the solution 

r = ~ ,  (4.17) 
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Since ~ ' =  ~bz ~ satisfies the homogeneous equation L O ' =  O, the solvability 
condition for (4.16) implies 

are odd and f ' ,  ~' are even, the first term vanishes, leaving the Since f, f "  
result 

f ~  2btp'(z) dz = 4b = 0 (4.19) 
--oo 

Using the matching relation (3.13), we obtain 

u ~  0 (4.20) 

This satisfies (1.7) with a-= 0. 
The latent heat condition (1.6) is the only condition which remains to 

be verified. Since (1.4) is identical in both forms of the phase field equations 
(i.e., second and higher order) and ~b~ has the same qualitative 
behavior, the analysis of Section 6 of ref. 3 may be used in identical form 
to obtain (1.6). 

5. THE Q U A S I S T A T I C  OR H E L E - S H A W  L IMIT  

P r o p o s i t i o n  5.1. In the formal asymptotic limit as g approaches. 
zero with a-= e, and l, K also proportional to e and ~--const, the phase 
field equations [(1.2), (1.4)] are governed by the sharp interface model 
[(1.6)-(1.8)] with ~ defined by (2.12) and f i - e  II01112. 

Remark. If e also approaches zero in Proposition5.1, then one 
obtains the analog of Proposition 3.2, i.e., the velocity coefficient fl is zero. 

The phase field equations (1.2), (1.4) can be written as 

C 2 
elu, + T  ~o,= Au (5.1) 

M 2n J2n 
0{lg2(40t= 2 gl ~ (DII -1- "''Ddd) n q )+ f (q~)+2e lU  

n=l 
(5.2) 

where ~1, el are c~, e rescaled by O(1) constants, and c2=K1-1 .  

We use the procedure of Section 3 to examine the outer and inner 
expansions. 
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Outer Expansion 
o(1): 

0 ( 8 1 ) :  

C 2 
~-q,~176 (5.3) 

f(q~o) = 0 (5.4) 

C 2 
~ ~ Au 1 (5.5) U t 

f'(~o ~ q)' + 2u ~ = 0 (5.6) 

Equations (5.4) and (5.6) are identical to (3.2) and (3.4), respectively, so 
that the solutions (3.5) and (3.6) are valid in this case also. Hence, Eq. (5.3) 
reduces to Laplace's equation (1.8) for all points which are not on the 
interface. 

Inner Expansion 
O(1): 

U~ = 0  (5.7) 

~, J2n o2nq ~~ 
n = l  (2n)! ~Z 2n } - f ( ~ 0 ) ~ - - - 0  ( 5 . 8 )  

The O(1) inner expansion is identical to (3.11) and (3.12), so that the 
solution U ~ ~b ~ obtained in (3.14), (3.16) remains valid. 

The next order is given as follows: 
0(~): 

C 2 
t _ rOatO Upp-2 ' " P = 0  (5.9) 

1 0 2 o - %  
,=l(-~n)T.\~z2~ +emc ~Tz277_gj+f'(O~ ~ (5.10) 

The analysis of the inner expansion then parallels the development of 
Eqs. (3.19) (3.31), thereby verifying Proposition 5.1. 

The limiting model [(1.6)-(1.8)] is a quasistatic model in the sense 
that temperature is always in a steady state by virtue of (1.8). These 
equations have also been used to describe the Hele-Shaw cell, where u is 
interpreted as the pressure difference between fluids. (9) 
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